Intermittent visuomotor processing in the human cerebellum, parietal cortex, and premotor cortex.

نویسندگان

  • David E Vaillancourt
  • Mary A Mayka
  • Daniel M Corcos
چکیده

The cerebellum, parietal cortex, and premotor cortex are integral to visuomotor processing. The parameters of visual information that modulate their role in visuomotor control are less clear. From motor psychophysics, the relation between the frequency of visual feedback and force variability has been identified as nonlinear. Thus we hypothesized that visual feedback frequency will differentially modulate the neural activation in the cerebellum, parietal cortex, and premotor cortex related to visuomotor processing. We used functional magnetic resonance imaging at 3 Tesla to examine visually guided grip force control under frequent and infrequent visual feedback conditions. Control conditions with intermittent visual feedback alone and a control force condition without visual feedback were examined. As expected, force variability was reduced in the frequent compared with the infrequent condition. Three novel findings were identified. First, infrequent (0.4 Hz) visual feedback did not result in visuomotor activation in lateral cerebellum (lobule VI/Crus I), whereas frequent (25 Hz) intermittent visual feedback did. This is in contrast to the anterior intermediate cerebellum (lobule V/VI), which was consistently active across all force conditions compared with rest. Second, confirming previous observations, the parietal and premotor cortices were active during grip force with frequent visual feedback. The novel finding was that the parietal and premotor cortex were also active during grip force with infrequent visual feedback. Third, right inferior parietal lobule, dorsal premotor cortex, and ventral premotor cortex had greater activation in the frequent compared with the infrequent grip force condition. These findings demonstrate that the frequency of visual information reduces motor error and differentially modulates the neural activation related to visuomotor processing in the cerebellum, parietal cortex, and premotor cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural basis for the processes that underlie visually guided and internally guided force control in humans.

Despite an intricate understanding of the neural mechanisms underlying visual and motor systems, it is not completely understood in which brain regions humans transfer visual information into motor commands. Furthermore, in the absence of visual information, the retrieval process for motor memory information remains unclear. We report an investigation where visuomotor and motor memory processes...

متن کامل

Cerebello-Cortical Differences in Effective Connectivity of the Dominant and Non-dominant Hand during a Visuomotor Paradigm of Grip Force Control

Structural and functional differences are known to exist within the cortical sensorimotor networks with respect to the dominant vs. non-dominant hand. Similarly, the cerebellum, a key structure in the sensorimotor network with its cerebello-cortical connections, has been reported to respond differently when using the dominant vs. non-dominant hand. Several groups have already investigated causa...

متن کامل

Neural substrates of visuomotor learning based on improved feedback control and prediction

Motor skills emerge from learning feedforward commands as well as improvements in feedback control. These two components of learning were investigated in a compensatory visuomotor tracking task on a trial-by-trial basis. Between-trial learning was characterized with a state-space model to provide smoothed estimates of feedforward and feedback learning, separable from random fluctuations in moto...

متن کامل

Visual feedback alters force control and functional activity in the visuomotor network after stroke

Modulating visual feedback may be a viable option to improve motor function after stroke, but the neurophysiological basis for this improvement is not clear. Visual gain can be manipulated by increasing or decreasing the spatial amplitude of an error signal. Here, we combined a unilateral visually guided grip force task with functional MRI to understand how changes in the gain of visual feedbac...

متن کامل

Human chorionic gonadotropin attenuates amyloid-β plaques induced by streptozotocin in the rat brain by affecting cytochrome c-ir neuron density

Objective(s): Amyloid β plaques, in Alzheimer’s disease, are deposits in different areas of the brain such as prefrontal cortex, molecular layer of the cerebellum, and the hippocampal formation. Amyloid β aggregates lead to the release of cytochrome c and finally neuronal cell death in brain tissue. hCG has critical roles in brain development, neuron differentiation, and function. Therefore, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 2  شماره 

صفحات  -

تاریخ انتشار 2006